	LOYO	DLA COLLEGE (AUTONO	DMOUS), CHENN	AI – 600 034	
M.Sc.DEGREE EXAMINATIO			ATION – MATHE	DN – MATHEMATICS	
<u> </u>		FIRST SEMESTER – NOVEMBER 2018			
LUCEAT LIN	VESTRA	16/17/18PMT1MC0	02- REAL ANAL	YSIS	
Date: Time:	01:00-04:00	Dept. No.		Max. : 100 Marks	
Answer all Questions.					
1. ((a) State and prove	e and prove the intermediate value theorem of a continuous function defined on an interval.			
	(OR)				
(b) Prov	e that a mapping f	f of a metric space X into a me	etric space Y is conti	nuous on X if and only if $f^{-1}(C)$	
is closed in X for every closed set C in Y.			(5 marks)		
	(c) (i) Suppose	f is continuous on [a,b], f'(x) exists at some po	int $x \in [a, b]$, g is defined on an	
interval which contains the range of f and g is differentiable at the point $f(x)$. If $h(t) =$					
$g(f(t)), a \le t \le b$, then prove that h is differentiable at x and $h'(x) = g'(f(x))f'(x)$					
(ii) Suppose f is a real differentiable function on [a,b] and $f'(a) < \lambda < f'(b)$. Prove that the function of) < λ < $f'(b)$. Prove that there is	
	a point $x \in$	(a, b) such that $f'(x) = \lambda$.		(10+5 marks)	
(OR)					
	(d) (i) If f and g are continuous real functions on [a,b] which are differentiable in (a,b),				
	then prove that there is a point at which $[f(b) - f(a)]g'(x) =$				
[g(b) - g(a)]f'(x) and hence prove the mean value theorem.					
(ii)Determine all the numbers c which satisfy mean value theorem for the					
	function $f(x)$	$= x^3 + 2x^2 - x$ on [-1, 2].		(10+5marks)	
2.	(a) Suppose $lpha$ incr	eases on [a,b], $a \leq y_0 \leq b, \alpha$ is	continuous at $y_0, f(y)$	$f(x) = 1$ and $f(x) = 0$ if $x \neq y_0$.	
Prove that $f \in \Re(\alpha)$ and $\int f d\alpha = 0$.					
(OR) (b) If $f \in \Re(\alpha)$, then prove that $ f \in \Re(\alpha)$ and $\left \int_a^b f d\alpha\right \le \int_a^b f d\alpha$ (5 marks)					
(c) (i) Prove that $f \in \Re(\alpha)$ on [a, b] if and only if for every $\epsilon > 0$, there exists a partition					
P such that $U(P, f, \alpha) - L(P, f, \alpha) < \epsilon$.					
	(ii) Any mono	otone function f: $[0, 1] \rightarrow R$ is F	Riemann Integrable.	Justify. (9+6 marks)	
(OR)					
(d) (i) Assume α increases monotonically and $\alpha' \in \Re$ on [a, b]. Let f be a bounded real					
function on [a,b]. Then prove that $f \in \Re(\alpha)$ if and only if $f\alpha' \in \Re$. Also prove					
that $\int_a^b f d\alpha = \int_a^b f(x) \alpha'(x) dx$.					
	(ii) State and p	prove the fundamental theorem	of calculus.	(9+6 marks)	

3. (a) State and prove the Cauchy criterion for uniform convergence of sequence of functions.

(**OR**)

- (b) Prove that for, $f_n(x) = \frac{sinnx}{\sqrt{n}}$, x real, n = 1, 2, ..., $\lim_{n \to \infty} f_n'(0) \neq f'(0).$
- (c) If $\{f_n\}$ is a sequence of differentiable functions on [a, b] such that $\{f_n(x_0)\}$ converges for $x_0 \in [a, b]$ and $\{f_n'\}$ converges uniformly on [a, b] then prove that $\{f_n\}$ converges uniformly on [a, b] to a function f and $\lim_{n\to\infty} f'_n(x) = f'(x)$.

(OR)

(d) State and prove the Stone-Weierstrass theorem.

(15 marks)

4. (a) State and prove the Bessel's Inequality and hence derive the Parseval's formula.

(OR)

(b)) Let $S = \{\varphi_0, \varphi_1, \varphi_2, ...\}$ be orthnormal on I and assume that $f \in L^2(I)$. Define two

sequences of functions $\{s_n\}$ and $\{t_n\}$ on I as follows: $s_n(x) = \sum_{k=0}^{\infty} c_k \varphi_k(x)$, $t_n(x) = \sum_{k=0}^{\infty} b_k \varphi_k(x)$ where $c_k = (f, \varphi_k(x) \text{ for } k = 0, 1, 2... \text{ and } b_0, b_1, b_2 ... \text{ are arbitrary complex numbers. Then for each n, prove that <math>||f - s_n|| \le ||f - t_n||$ (5 marks)

n, prove that $||f - s_n|| \le ||f - t_n||$ (5)

(c) (i) State and prove Riemann-Lebesgue lemma.

(ii) If $f \in L[0,2\pi]$, f is periodic with period 2π , then prove that the Fourier series generated by f converges for a given value of x if and only if for some $\delta < \pi$, $\lim_{n \to \infty} \frac{2}{\pi} \int_0^{\delta} \left(\frac{f(x+t)+f(x-t)}{2}\right) \frac{\sin(n+\frac{1}{2})t}{t} dt$ exists and in this case this limit is the sum of the series. (OR) (d) (i) If $f \in L[0,2\pi]$, f is periodic with period 2π and $\{s_n\}$ is a sequence of partial sums of Fourier series

generated by f,
$$s_n = \frac{\alpha_0}{2} + \sum_{k=1}^n (a_k coskx + b_k sinkx), n = 1,2...$$
 then prove that $s_n(x) = \frac{2}{\pi} \int_0^{\pi} \frac{f(x+t)+f(x-t)}{2} D_n(t) dt.$

(ii) State and prove Fejer's theorem.

5.

(7+8 marks)

(a) Prove that Ω , the set of all invertible linear operators on \mathbb{R}^n , is an open subset of $L(\mathbb{R}^n)$.

(OR)

(b) Suppose X is a complete metric space and ϕ is a contraction of X into X. Prove that there exist one and only one $x \in X$ such that $\phi(x) = x$. (5 marks)

(c) State and prove the inverse function theorem.

(OR)

(d) State and prove the implicit function theorem. (15 marks)
