LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc.DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2018
16/17/18PMT 1MC02- REAL ANALYSIS

Date: 27-10-2018
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

Answer all Questions.

1. (a) State and prove the intermediate value theorem of a continuous function defined on an interval.
(OR)
(b) Prove that a mapping f of a metric space X into a metric space Y is continuous on X if and only if $f^{-1}(C)$
is closed in X for every closed set C in Y .
(5 marks)
(c) (i) Suppose f is continuous on $[\mathrm{a}, \mathrm{b}], f^{\prime}(x)$ exists at some point $x \in[a, b], \mathrm{g}$ is defined on an interval which contains the range of f and g is differentiable at the point $\mathrm{f}(\mathrm{x})$. If $h(t)=$ $g(f(t)), a \leq t \leq b$, then prove that h is differentiable at x and $h^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)$
(ii) Suppose f is a real differentiable function on $[\mathrm{a}, \mathrm{b}]$ and $f^{\prime}(a)<\lambda<f^{\prime}(b)$. Prove that there is a point $x \in(a, b)$ such that $f^{\prime}(x)=\lambda$.
(10+5 marks)
(OR)
(d) (i) If f and g are continuous real functions on $[\mathrm{a}, \mathrm{b}]$ which are differentiable in (a, b), then prove that there is a point at which $[f(b)-f(a)] g^{\prime}(x)=$ $[g(b)-g(a)] f^{\prime}(x)$ and hence prove the mean value theorem.
(ii)Determine all the numbers c which satisfy mean value theorem for the function $f(x)=x^{3}+2 x^{2}-x$ on $[-1,2]$.
(10+5marks)
(a) Suppose α increases on [a,b], $a \leq y_{0} \leq b, \alpha$ is continuous at $y_{0}, f\left(y_{0}\right)=1$ and Prove that $f \in \mathfrak{R}(\alpha)$ and $\int f d \alpha=0$.
(OR)
(b) If $f \in \mathfrak{R}(\alpha)$, then prove that $|f| \in \Re(\alpha)$ and $\left|\int_{a}^{b} f d \alpha\right| \leq \int_{a}^{b}|f| d \alpha \quad$ (5 marks)
(c) (i) Prove that $f \in \mathfrak{R}(\alpha)$ on [a, b] if and only if for every $\epsilon>0$, there exists a partition \mathbf{P} such that $U(P, f, \alpha)-L(P, f, \alpha)<\epsilon$.
(ii) Any monotone function $\mathrm{f}:[0,1] \rightarrow \mathrm{R}$ is Riemann Integrable. Justify.
(d) (i) Assume α increases monotonically and $\alpha^{\prime} \in \Re$ on $[\mathrm{a}, \mathrm{b}]$. Let f be a bounded real function on $[\mathrm{a}, \mathrm{b}]$. Then prove that $f \in \mathfrak{R}(\alpha)$ if and only if $f \alpha^{\prime} \in \mathfrak{R}$. Also prove that $\int_{a}^{b} f d \alpha=\int_{a}^{b} f(x) \alpha^{\prime}(x) d x$.
(ii) State and prove the fundamental theorem of calculus.
2. (a) State and prove the Cauchy criterion for uniform convergence of sequence of functions.

(OR)

(b) Prove that for, $f_{n}(x)=\frac{\operatorname{sinn} x}{\sqrt{n}}, x$ real, $n=1,2 \ldots$,

$$
\lim _{n \rightarrow \infty} f_{n}^{\prime}(0) \neq f^{\prime}(0)
$$

(c) If $\left\{f_{n}\right\}$ is a sequence of differentiable functions on [a, b] such that $\left\{f_{n}\left(x_{0}\right)\right\}$ converges for $x_{0} \in[a, b]$ and $\left\{f_{n}{ }^{\prime}\right\}$ converges uniformly on $[\mathrm{a}, \mathrm{b}]$ then prove that $\left\{f_{n}\right\}$ converges uniformly on $[\mathrm{a}, \mathrm{b}]$ to a function f and $\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)=f^{\prime}(x)$.
(d) State and prove the Stone-Weierstrass theorem.
4. (a) State and prove the Bessel's Inequality and hence derive the Parseval's formula.
(OR)
(b)) Let $S=\left\{\varphi_{0}, \varphi_{1}, \varphi_{2}, \ldots\right\}$ be orthnormal on I and assume that $f \in L^{2}(I)$. Define two sequences of functions $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ on I as follows: $s_{n}(x)=\sum_{k=0}^{\infty} c_{k} \varphi_{k}(x), t_{n}(x)=\sum_{k=0}^{\infty} b_{k} \varphi_{k}(x)$ where $c_{k}=\left(f, \varphi_{k}(x)\right.$ for $\mathrm{k}=0,1,2 \ldots$ and $\mathrm{b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2} \ldots$ are arbitrary complex numbers. Then for each n, prove that $\left\|f-s_{n}\right\| \leq\left\|f-t_{n}\right\|$ (5 marks)
(c) (i) State and prove Riemann-Lebesgue lemma.
(ii) If $f \in L[0,2 \pi]$, f is periodic with period 2π, then prove that the Fourier series generated by f converges for a given value of x if and only if for some $\delta<$ $\pi, \lim _{n \rightarrow \infty} \frac{2}{\pi} \int_{0}^{\delta}\left(\frac{f(x+t)+f(x-t)}{2}\right) \frac{\sin \left(n+\frac{1}{2}\right) t}{t} d t$ exists and in this case this limit is the sum of the series.

(7+8 marks)

(OR)

(d) (i) If $f \in L[0,2 \pi]$, f is periodic with period 2π and $\left\{s_{n}\right\}$ is a sequence of partial sums of Fourier series generated by f, $s_{n}=\frac{a_{0}}{2}+\sum_{k=1}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right), n=1,2 \ldots$ then prove that $s_{n}(x)=$ $\frac{2}{\pi} \int_{0}^{\pi f(x+t)+f(x-t)} \frac{2}{} D_{n}(t) d t$.
(ii) State and prove Fejer's theorem.
(7+8 marks)
5. (a) Prove that Ω, the set of all invertible linear operators on R^{n}, is an open subset of $L\left(R^{n}\right)$.
(OR)
(b) Suppose X is a complete metric space and ϕ is a contraction of X into X . Prove that there exist one and only one $x \in X$ such that $\phi(x)=x$.
(c) State and prove the inverse function theorem.
(OR)
(d) State and prove the implicit function theorem.
(15 marks)

